-9=-23+7x^2

Simple and best practice solution for -9=-23+7x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9=-23+7x^2 equation:



-9=-23+7x^2
We move all terms to the left:
-9-(-23+7x^2)=0
We get rid of parentheses
-7x^2+23-9=0
We add all the numbers together, and all the variables
-7x^2+14=0
a = -7; b = 0; c = +14;
Δ = b2-4ac
Δ = 02-4·(-7)·14
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*-7}=\frac{0-14\sqrt{2}}{-14} =-\frac{14\sqrt{2}}{-14} =-\frac{\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*-7}=\frac{0+14\sqrt{2}}{-14} =\frac{14\sqrt{2}}{-14} =\frac{\sqrt{2}}{-1} $

See similar equations:

| 8y+5-4y+1=36 | | 3x-2(x-1)=x+5 | | 30=5x∴x= | | -7x-2=5x+10 | | 10k+5+0=-2k+-3k+80 | | Y=15-14x | | (x+4)3=6 | | -5z=-3 | | 9z=180;z=20 | | 2y/9=3 | | 4x-8=2(x-1) | | 3y/4-5=11 | | 4(2x–3)=-20 | | x2-5x-27=0 | | 12=0.6x^2 | | 1y+6=41 | | 12.8b=12.669 | | 3.6b=17.5 | | 0.203x=x^2+0.3186 | | 14x+7+44+9x+3=180x=5.47 | | 9.6*10^-31x=(0.675-x)(0.472-x) | | –9k+8=–10k | | 4.6-1.2x=0.8-54.6x | | 4.6+1.2x=0.8+54.6x | | 3y-9y=9 | | 4x(5+6x)=212 | | 8h=136.h= | | 79-x=54 | | 4x-10°=2x-20° | | C(n)=50+4n | | 6d-2+2d=-2+4d+8 | | 6/7x12=6/7x12 |

Equations solver categories